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The electron diffusion induced by a two-dimensional electrostatic turbulence, in a sheared slab approximation of the toroidal 
magnetic geometry, is studied by direct numerical simulation. The transport properties of the electrons are obtained by 
numerical simulations assuming an isotropic spectrum of electrostatic drift type turbulence that is Gaussian for small wave-
vectors and power-law k -3 for large wave-vectors. The ‘radial’ and the ‘poloidal’ running and asymptotic diffusion 
coefficients of electrons are obtained for physically relevant parameter values and the existence of an enhanced diffusion in 
the poloidal direction is observed in the presence of magnetic shear.  
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1. Introduction 
 
The understanding of anomalous transport in tokamak 

plasmas is still a major problem for the plasma physicists. 
Thus, if ε  is the dimensionless electrostatic turbulence 
amplitude, the diffusion coefficient in the low frequency 
limit (wave frequency much smaller than the guiding-
center rotation frequency) resulting from the Gaussian 
theory is:  , = )D( αεε with 1. =  α  This problem has been 
reconsidered in Ref. [1] where, on the basis of the 
percolation theory, it was found that the exponent should 
be α  = 0.7. Other numerical simulations have given a 
critical exponent value between 0.7 and 0.8 (see e.g. 
Ottaviani [2] who obtained 0.8 with a set of 64 waves of 
random amplitudes and Reuss and Misguich [3] who 
obtained 0.7 using a turbulence spectrum defined on a 
limited wavelength range. This last result was recovered 
by B. Weyssow and M. De Leener (unpublished work). 
The turbulence spectrum defined in their work, on a larger 
wavelength range, was used in our paper. This type of 
diffusion, with non-integer exponent, was also observed in 
other numerical experiments [4-7]. Very recent works 
studied the same problems using a semi-analytical method, 
the decorrelation trajectory method (DCT) (see Refs. 
[8-12]). The later method can give information about the 
diffusion even for relatively large turbulence regime, i.e. 
Kubo numbers that are greater than 1. In our paper, the 
electron diffusion induced by a two-dimensional 
electrostatic turbulence (the electrostatic turbulence is 
related to low frequency and long wavelength drift modes) 
in a sheared slab approximation of the toroidal magnetic 
geometry, was studied by direct numerical simulation. The 
‘radial’ and the ‘poloidal’ running and asymptotic 
diffusion coefficients of electrons are obtained for 

physically relevant Kubo numbers and an enhanced 
diffusion in the poloidal direction is observed in the 
presence of magnetic shear. The paper is organized as 
follow. In Section 2 the model equation and the parameters 
are established. In Section 3 the diffusion coefficient were 
calculated for a specific electrostatic spectrum by direct 
numerical simulation. The conclusions are presented in 
Section 4. 

 
2. The model and the parameters 
 
A two-dimensional sheared-slab system is considered 

with the main magnetic field 0B  in the Oz -direction and 
the sheared term in the Oy -direction:  
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The particular choice of the magnetic field (1), 

implies that all magnetic field gradients ( ( )bb ∇⋅ , B∇  
etc.) reduce to zero and that the guiding center position 

( )Z,Y,X≡X  is given by (see e.g. [13]):  
 

  BEbX ×2B
cU +=&                 (2) 

 
In Eq. (2) B/Bb = is the unit vector along the (total) 

magnetic field; U is the parallel guiding center velocity 
and E is the electrostatic field. In order to obtain the 
equations of motion for the guiding center to the first order 
in the drift parameter [13] (terms proportional to )X(s2  
are neglected) we will use the realistic assumption 
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,VconstU el
th≡=  where el

thV  is the thermal electron 
velocity. In order to apply the DCT method the following 
dimensionless quantities x ( ) z,y,x≡ , τ  and ϕ  are 
defined in terms of the dimensional variables:  

 

)t,Z,()t,Z,(

;;t;Zz

c||

c||

τλλ
εϕ→Φ

λ
=

τ
≡τ

λ
=

⊥

⊥

XX

Xx

  (3) 

 
In Eq. (3) ||,λλ⊥  are the perpendicular and the parallel 

correlation lengths, with respect to the main magnetic 
field, cτ is the correlation time of the fluctuating 
electrostatic field. The dimensionless equations that can be 
analyzed by DCT are then:  
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In Eq. (4) the electrostatic Kubo number K and the 

shear Kubo number sK are defined as: 
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The definitions from Eq. (5) are specific to the 

decorrelation trajectory method [12] and will be used in 
order to compare their values with those specific to the 
direct numerical simulations. 

 
 
3. Diffusion coefficients 
 
In our numerical simulations we used the capacity of 

the Universite Libre de Bruxelles (ULB) central parallel 
computer that accepts four matrices (4096×4096) for the 
discretized representation of the electrostatic stochastic 
field. The spectrum is constructed to be Gaussian for small 
wave-vectors and 3k − spectrum for large wave-vectors: 
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The continuity of the spectrum and of its first 

derivative in trkk =  lead to the following values for B  
and Δ : 
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and the extension of the range of the wave-vectors allows 

us to say that the spectrum is a "quasi-continuously" one 
[7]. The characteristics of the spectrum, i.e. the correlation 
length and the decorrelation time, is partly defined 
according to drift wave turbulence measurements and 
partly from the parameter used in the decorrelation 
trajectory method [12]. 
The spectrum given in Eq. (6) is obtained by building the 
electrostatic potential )t,(XΦ  as a sum of discrete plane 
waves of the form: 
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The choice for the electrostatic stochastic potential 

field given in Eq. (7) has an explanation: if more than two 
waves are considered (such as in our case) the solutions of 
the equations of motion are chaotic and this provides a 
mechanism for anomalous diffusion (for large scale 
chaos). The quantity Sσ  is defined as: 
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Fig. 1. A box with 64 trajectories for the shearless case 
and 5.2Ksim = . 

 

 
Fig. 2. Another box with 64 trajectories in the case of 
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5.1Ksim
s =  and 5.2Ksim =  

 
In order to get the required exponential decrease of 

the spatial autocorrelation of the potential (and 
consequently of the velocity correlation), in the numerical 
simulation we take: 

 
π=π=π= 512k,256k,8k Mtrm  

 
The components of the wave vectors are thus integer 

multiples of the elementary discretization wave vector 
π= 2k0 . The perpendicular correlation length of the 

potential in the numerical simulation is mL015.0sim ≈λ⊥  
where L  is the periodicity length (related to a 
characteristic wave-vector); the potential is defined on a 
square of unit size L , supposed to be periodic in the plane 
( y,x ). The following dimensionless quantities are used in 
the numerical simulations: 
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In Eq. (7) trλ  is the length wave corresponding to trk  

andω  is the single frequency. The dimensionless system 
for the numerical simulations has the same form as for the 
DCT method [see Eq. (4)] but with the following 
definitions for the corresponding electrostatic and shear 
Kubo numbers that are obtained from the system (2) using 
the expressions (7) and (8) as: 
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The quantity 

S

E~
σ  is related to the amplitude of the 

electrostatic fluctuation ε . 
The following ratios between the two sets of Kubo 

numbers specific to direct numerical simulation and 
decorrelation trajectory method [12] are obvious: 
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For any pair of the Kubo numbers ( simK and sim
sK ) we 

considered a (relatively) large number of trajectories 
(64×96×8) in order to ensure a good statistics. 

In Figure 1 a single box with 64 trajectories are 
displayed, in shearless case and for a relatively large level 
of turbulence, 5.2Ksim = . In any similar box like that 
from Figure 1, we considered the equal-distributed starting 
points for trajectories. Red asterisks represent the initial 
conditions for trajectories (at 0=τ ). When the level of 
stochasticity and/or the shear are increased, the shape of 
any box with 64 trajectories could have a different look 

than that from Figure 1. In this spirit, we can see in Figure 
2, a typical box, where some trajectories have very long 
journeys. The later characteristic will be reflected directly 
in the values of the mean squared displacements )(x 2 τΔ  
and )(y2 τΔ and therefore in the diffusion coefficients.  
The running diffusion coefficient in x- direction is defined 
as:  
 

)(x)(D 2
d
d

2
1sim
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A similar formula for )(Dsim

yy τ can be defined. We 
have calculated the mean squared displacement in x- and 
y- direction and also the running diagonal diffusion 
coefficients that are represented in Figures 3 and 4. 

We can see from Figures 3 and 4 that the running 
diffusion coefficient in the x - direction is by an order of 
magnitude smaller than that in the y-direction; the 
diffusion coefficients tend to reach a final stationary value 
which is almost reached for 25.0x ≥τ  for the radial one. 
For the poloidal one, the existence of the magnetic shear, 
postponed the achievement of the final saturation value: in 
this case the time is 45.0y ≥τ . Thus an asymptotic 
diffusive regime in both directions is present. In the 
shearless case, for both weak and relatively strong 
electrostatic turbulence regimes, the numerical simulations 
results are in agreement with the results obtained by the 
DCT method [12]. For the shearless case, the diagonal 
running diffusion coefficients are approximately equals 
each other. This is a verification of the code used in the 
numerical evaluation. 

 

 
 

Fig 3. Running radial diffusion coefficients for 
5.2Ksim = and four different values for magnetic shear. 

 

 
Fig 4. Running poloidal diffusion coefficients for 

5.2Ksim = and four different values for magnetic shear. 
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In Fig. 5 the ratio between the asymptotic poloidal and 
radial diffusion coefficients are shown as functions of the 
shear Kubo number for three levels of electrostatic 
turbulence: }.5.2,5.0,05.0{Ksim = An increase of the 

slope of this ratio when simK is increasing is observed. The 
effect of the magnetic shear is obvious: a reduction of the 
diffusion on the radial direction and an enhanced diffusion 
on the poloidal one. 

We used in our paper values for the Kubo numbers 
that are compatible with the values specific to the DCT 
method. Then, for the shear Kubo number the following 
relation holds: ss

sim
s K2.0K6/2.1K =≈  and therefore a 

relation between cτ and ω : 2.02
K

K

cs

sim
s ≈

ωτ
π

=  holds. 

 
The following condition between the electrostatic 

Kubo numbers (for both numerical simulation and DCT) 
was used:  
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Fig. 5. Ratio between the poloidal and radial asymptotic 
diffusion coefficients as function of the shear Kubo 
number  and  three  different  values  of  the electrostatic  
                           Kubo number 
This kind of direct numerical simulation allows us to 

state that the DCT method can be correctly applied in the 
case of inhomogeneous Langevin system of equations.  

 
 
4. Conclusions 
 
The global effects of simK and sim

sK on the running 
and asymptotic diagonal diffusion tensor components are 
exhibited using direct numerical simulation for a guiding 
center system in a first order of drift approximation.  

We presented here a severe selection of the results; a 
large numbers of runs were performed for this study, using 
mainly the computing facilities of ULB-VUB Belgium. 

The radial running diffusion coefficient starts with a 
linear part characteristic to a ballistic regime, τ∼τ)(Dxx . 

In all of the cases a trapping effect appears for large 
enough values of simK and/or sim

sK .  
The trapping regime does not appear for the poloidal 

diffusion coefficient in the same conditions.  
We can conclude that an enhancing of the diffusion on 

poloidal direction and a relatively reduction on the radial 
one is caused by the presence of the magnetic shear for the 
same level of electrostatic turbulence. This behavior is 
expected because the shear term is oriented along the y - 
axis and is similar to a zonal flow generation.  

In our paper we have calculated the diffusion 
coefficients for the electrons by direct numerical 
simulation and we have found a very good qualitative 
agreement with the results obtained by the decorrelation 
trajectory method [12]. This conclusion gives a relatively 
certitude in order to apply DCT to other problems of 
interest where a Langevin treatment can be done. 
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