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Influence of magnetic shear and stochastic electrostatic

field on the electron diffusion
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The electron diffusion induced by a two-dimensional electrostatic turbulence, in a sheared slab approximation of the toroidal
magnetic geometry, is studied by direct numerical simulation. The transport properties of the electrons are obtained by
numerical simulations assuming an isotropic spectrum of electrostatic drift type turbulence that is Gaussian for small wave-
vectors and power-law k for large wave-vectors. The ‘radial and the ‘poloidal’ running and asymptotic diffusion
coefficients of electrons are obtained for physically relevant parameter values and the existence of an enhanced diffusion in
the poloidal direction is observed in the presence of magnetic shear.
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1. Introduction

The understanding of anomalous transport in tokamak
plasmas is still a major problem for the plasma physicists.
Thus, if ¢ is the dimensionless electrostatic turbulence
amplitude, the diffusion coefficient in the low frequency
limit (wave frequency much smaller than the guiding-
center rotation frequency) resulting from the Gaussian
theory is: D(g)=¢®, with a.=1. This problem has been
reconsidered in Ref. [1] where, on the basis of the
percolation theory, it was found that the exponent should
be o = 0.7. Other numerical simulations have given a
critical exponent value between 0.7 and 0.8 (see e.g.
Ottaviani [2] who obtained 0.8 with a set of 64 waves of
random amplitudes and Reuss and Misguich [3] who
obtained 0.7 using a turbulence spectrum defined on a
limited wavelength range. This last result was recovered
by B. Weyssow and M. De Leener (unpublished work).
The turbulence spectrum defined in their work, on a larger
wavelength range, was used in our paper. This type of
diffusion, with non-integer exponent, was also observed in
other numerical experiments [4-7]. Very recent works
studied the same problems using a semi-analytical method,
the decorrelation trajectory method (DCT) (see Refs.
[8-12]). The later method can give information about the
diffusion even for relatively large turbulence regime, i.e.
Kubo numbers that are greater than 1. In our paper, the
electron diffusion induced by a two-dimensional
electrostatic turbulence (the electrostatic turbulence is
related to low frequency and long wavelength drift modes)
in a sheared slab approximation of the toroidal magnetic
geometry, was studied by direct numerical simulation. The
‘radial’ and the ‘poloidal’ running and asymptotic
diffusion coefficients of electrons are obtained for

physically relevant Kubo numbers and an enhanced
diffusion in the poloidal direction is observed in the
presence of magnetic shear. The paper is organized as
follow. In Section 2 the model equation and the parameters
are established. In Section 3 the diffusion coefficient were
calculated for a specific electrostatic spectrum by direct
numerical simulation. The conclusions are presented in
Section 4.

2. The model and the parameters

A two-dimensional sheared-slab system is considered
with the main magnetic field B, in the Oz -direction and

the sheared term in the Oy -direction:
B(X)=Bole, + XLite, |= Boe, +s(X)e, | )

The particular choice of the magnetic field (1),
implies that all magnetic field gradients ((b-V)b, VB

etc.) reduce to zero and that the guiding center position
X =(X, Y, Z) is given by (see e.g. [13]):

. C
X=Ub+—_7ExB @)

In Eqg. (2) b=B/Biis the unit vector along the (total)
magnetic field; U is the parallel guiding center velocity
andEis the electrostatic field. In order to obtain the
equations of motion for the guiding center to the first order

in the drift parameter [13] (terms proportional to s°(X)
are neglected) we will use the realistic assumption
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U=const=V{, whereV{ is the thermal electron

velocity. In order to apply the DCT method the following
dimensionless quantities x =(x, y), z,t and ¢ are
defined in terms of the dimensional variables:

z t X
z =—: X
}\.” Te 7\‘L (3)
(X, Z, t)—>g<p(i z 4
Ay 7¥|| Te

In Eq. (3) 4,4 are the perpendicular and the parallel

correlation lengths, with respect to the main magnetic
field, t.is the correlation time of the fluctuating

electrostatic field. The dimensionless equations that can be
analyzed by DCT are then:

dx(r) K a(p(x(r), 7:)
dt oy

) _ o) 20 “
d OX

In Eq. (4) the electrostatic Kubo number K and the
shear Kubo number K are defined as:

€CT, V

K= (5)
BO 7‘2J_ LS

K=

The definitions from Eq. (5) are specific to the
decorrelation trajectory method [12] and will be used in
order to compare their values with those specific to the
direct numerical simulations.

3. Diffusion coefficients

In our numerical simulations we used the capacity of
the Universite Libre de Bruxelles (ULB) central parallel
computer that accepts four matrices (4096x4096) for the
discretized representation of the electrostatic stochastic
field. The spectrum is constructed to be Gaussian for small

wave-vectors and k> spectrum for large wave-vectors:

S(k):{sl(k)zBexp(—kTZ) for kelkp, K ©

S,(k)=k3, for kelky, ky]
The continuity of the spectrum and of its first

derivative in k =Kk, lead to the following values for B
and A:

k2

B=k;> exp—- r Azékﬁ

and the extension of the range of the wave-vectors allows

us to say that the spectrum is a "quasi-continuously" one
[7]. The characteristics of the spectrum, i.e. the correlation
length and the decorrelation time, is partly defined
according to drift wave turbulence measurements and
partly from the parameter used in the decorrelation
trajectory method [12].

The spectrum given in Eq. (6) is obtained by building the
electrostatic potential ®(X,t) as a sum of discrete plane

waves of the form:

O(X, 1) =G£jdksk(k)cos(k-x—wt o) %
S

The choice for the electrostatic stochastic potential
field given in Eq. (7) has an explanation: if more than two
waves are considered (such as in our case) the solutions of
the equations of motion are chaotic and this provides a
mechanism for anomalous diffusion (for large scale
chaos). The quantity o is defined as:

Ky
k? + | dksS3(k)k?
km klr
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Fig. 1. A box with 64 trajectories for the shearless case
and K™ =25,
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Fig. 2. Another box with 64 trajectories in the case of
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KM —1.5 and K™ =2.5

In order to get the required exponential decrease of
the spatial autocorrelation of the potential (and
consequently of the velocity correlation), in the numerical
simulation we take:

Kn=8n, ki =256m, ky =512n

The components of the wave vectors are thus integer
multiples of the elementary discretization wave vector
ko =2m. The perpendicular correlation length of the

potential in the numerical simulation is 2™ ~ 0.015L m

where L is the periodicity length (related to a
characteristic wave-vector); the potential is defined on a
square of unit size L, supposed to be periodic in the plane
(x,y). The following dimensionless quantities are used in

the numerical simulations:

Et_(D, X:L:X_ktr (8)
2n A 2n

In Eq. (7) A, is the length wave corresponding tok,,

and ® is the single frequency. The dimensionless system
for the numerical simulations has the same form as for the
DCT method [see Eq. (4)] but with the following
definitions for the corresponding electrostatic and shear
Kubo numbers that are obtained from the system (2) using
the expressions (7) and (8) as:

; Ki"" :EvtehI i
® L,

ky 2nEky ©
o og By

Ksim _

The quantity Gis is related to the amplitude of the

electrostatic fluctuatione .

The following ratios between the two sets of Kubo
numbers specific to direct numerical simulation and
decorrelation trajectory method [12] are obvious:

K™ (ky)®(h,)% 2nE 1
K 0T,

K™ 2n

OCg €

K 1.0
For any pair of the Kubo numbers ( KS™ and KS™ ) we

considered a (relatively) large number of trajectories
(64x96x8) in order to ensure a good statistics.

In Figure 1 a single box with 64 trajectories are
displayed, in shearless case and for a relatively large level
of turbulence, K®™ =25, In any similar box like that
from Figure 1, we considered the equal-distributed starting
points for trajectories. Red asterisks represent the initial
conditions for trajectories (at t=0). When the level of
stochasticity and/or the shear are increased, the shape of
any box with 64 trajectories could have a different look

than that from Figure 1. In this spirit, we can see in Figure
2, a typical box, where some trajectories have very long
journeys. The later characteristic will be reflected directl
in the values of the mean squared displacements zsz(r)y
and (Ay?(r)) and therefore in the diffusion coeffictients.
The running 'diffusion coefficient in x- direction is defined
as:

D3 (1) = & (ax* (9)) ©)

A similar formula for DJy’(t) can be defined. We
have calculated the mean squared displacement in x- and
y- direction and also the running diagonal diffusion
coefficients that are represented in Figures 3 and 4.

We can see from Figures 3 and 4 that the running
diffusion coefficient in the x - direction is by an order of
magnitude smaller than that in the y-direction; the
diffusion coefficients tend to reach a final stationary value
which is almost reached for t, >0.25 for the radial one.
For the poloidal one, the existence of the magnetic shear,
postponed the achievement of the final saturation value: in
this case the time is t, >0.45. Thus an asymptotic
diffusive regime in both directions is present. In the
shearless case, for both weak and relatively strong
electrostatic turbulence regimes, the numerical simulations
results are in agreement with the results obtained by the
DCT method [12]. For the shearless case, the diagonal
running diffusion coefficients are approximately equals
each other. This is a verification of the code used in the
numerical evaluation.
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Fig 3. Running radial diffusion coefficients for

K™ = 2.5 and four different values for magnetic shear.
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Fig 4. Running poloidal diffusion coefficients for
K®™ = 2.5 and four different values for magnetic shear.
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In Fig. 5 the ratio between the asymptotic poloidal and
radial diffusion coefficients are shown as functions of the
shear Kubo number for three levels of electrostatic

turbulence: K™ ={0.05,0.5, 2.5}. An increase of the
slope of this ratio when K™ is increasing is observed. The

effect of the magnetic shear is obvious: a reduction of the
diffusion on the radial direction and an enhanced diffusion
on the poloidal one.

We used in our paper values for the Kubo numbers
that are compatible with the values specific to the DCT
method. Then, for the shear Kubo number the following
relation holds: K™ ~1.2/6K, =0.2K, and therefore a

sim
K _ 2% 0.2 holds.
s Tc®

relation between t.and o:

The following condition between the electrostatic
Kubo numbers (for both numerical simulation and DCT)
was used:

KM < (0.056/1.2) K .
Then, considering %% =1, the following inequality

) . sim Kk 2
is also valid: KT _(ke2))” <0.05.
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Fig. 5. Ratio between the poloidal and radial asymptotic
diffusion coefficients as function of the shear Kubo
number and three different values of the electrostatic
Kubo number
This kind of direct numerical simulation allows us to
state that the DCT method can be correctly applied in the

case of inhomogeneous Langevin system of equations.

4. Conclusions

The global effects of K*™and KS™on the running

and asymptotic diagonal diffusion tensor components are
exhibited using direct numerical simulation for a guiding
center system in a first order of drift approximation.

We presented here a severe selection of the results; a
large numbers of runs were performed for this study, using
mainly the computing facilities of ULB-VUB Belgium.

The radial running diffusion coefficient starts with a
linear part characteristic to a ballistic regime, D, (t) ~ <.

In all of the cases a trapping effect appears for large
enough values of K®™ and/or K™ .

The trapping regime does not appear for the poloidal
diffusion coefficient in the same conditions.

We can conclude that an enhancing of the diffusion on
poloidal direction and a relatively reduction on the radial
one is caused by the presence of the magnetic shear for the
same level of electrostatic turbulence. This behavior is
expected because the shear term is oriented along the vy -
axis and is similar to a zonal flow generation.

In our paper we have calculated the diffusion
coefficients for the electrons by direct numerical
simulation and we have found a very good qualitative
agreement with the results obtained by the decorrelation
trajectory method [12]. This conclusion gives a relatively
certitude in order to apply DCT to other problems of
interest where a Langevin treatment can be done.
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